Predictive torque and flux control for the synchronous reluctance machine
نویسنده
چکیده
This paper presents a predictive torque and flux control algorithm for the synchronous reluctance machine. The algorithm performs a voltage space phasor pre-selection, followed by the computation of the switching instants for the optimum switching space phasors, with the advantages of inherently constant switching frequency and time equidistant implementation on a DSP based system. The criteria used to choose the appropriate voltage space phasor depend on the state of the machine and the deviations of torque and flux at the end of the cycle. The model of the machine has been developed on a d-q frame of coordinates attached to the rotor and takes into account the magnetic saturation in both d-q axes and the cross saturation phenomenon between both axes. Therefore, a very good approximation of this effect is achieved and the performance of the machine is improved. Several simulations and experimental results using a DSP and a commercially available machine show the validity of the proposed control scheme.
منابع مشابه
Comprehensive Design Procedure and Manufacturing of Permanent Magnet Assisted Synchronous Reluctance Motor
Combining the main advantages of the permanent magnet synchronous motors and pure synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM) has been considered as a promising alternative to the conventional induction motors. In this paper, utilizing a macroscopic design parameter, called insulation ratio along the q-axis, and based on the magnetic ...
متن کاملStudy on Application of Two Different Magnetic Materials in Rotor of Cylindrical Synchronous Generator to Produce Reluctance Torque
Synchronous generators are of two type’s salient pole type and round rotor type. The load angle curve of a cylindrical rotor synchronous machine comprises a single sine term only while in salient pole synchronous generators, power-angle characteristic has two terms. The first term is the fundamental component due to field excitation (the same as the cylindrical rotor) and the second term ...
متن کاملRobust Control of Encoderless Synchronous Reluctance Motor Drives Based on Adaptive Backstepping and Input-Output Feedback Linearization Techniques
In this paper, the design and implementation of adaptive speed controller for a sensorless synchronous reluctance motor (SynRM) drive system is proposed. A combination of well-known adaptive input-output feedback linearization (AIOFL) and adaptive backstepping (ABS) techniques are used for speed tracking control of SynRM. The AIOFL controller is capable of estimating motor two-axis inductances ...
متن کاملOptimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM
Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...
متن کاملInner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere
Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...
متن کامل